Vertex AI: Serving architecture for real-time machine learning

By SADA Engineering

Deploying machine learning algorithms for real-time inference is of utmost importance to power customer-facing web applications and other use cases. One of the prerequisites for a functional real-time ML serving architecture is to containerize the applications. Containerizing the runtimes provides a reproducible environment to train and deploy the ML models. In this article, we’ll look at some best practices and the process of deploying machine learning models using custom containers for real-time inference.

Download the hybrid work security playbook

Learn how to leverage Google Workspace to keep your hybrid teams secure.

Solve not just for today but for what's next.

We'll help you harness the immense power of Google Cloud to solve your business challenge and transform the way you work.

Scroll to Top